Compact CORDIC accelerator implementation for embedded RISC-V core

Alexey Shchekin, Ettore Giliberti

→ Codasip Studio and RISC-V Processors

Begin with a standard core

- Embedded and application cores
- High quality, production-ready
- Fully RISC-V compliant

Differentiate with Codasip Studio

- · Configure / Customize
- Using CodAL architecture description language

→ CORDIC accelerator implemented with CodAL

→ How customization affects the PPA

- 1 custom instruction call to start "CORDIC" flow
- 16 cycles to get the result
- 16-bit fixed-point results representation

(TSMC 28nm)	RISC-V(L31)	+ CORDIC
Area, a.u.	100%	104.4%
Performance gain	1x	24.3×
Energy consumption	100%	7.4%

Design time, lines of code in CodAL		Lines of code in Verilog
3 person-days	210	600 (~3x)