Effortless DSP extensions design for embedded RISC-V processors

→ Codasip Studio and RISC-V Processors

Begin with a standard core

- Embedded and application cores
- High quality, production-ready
- Fully RISC-V compliant •

Differentiate with Codasip Studio

- Configure / Customize
- Using CodAL architecture description language

\rightarrow DSP accelerators implemented with CodAL

\rightarrow How DSP customization affects the PPA

Processing time, a.u. Energy consumption, a.u. Si area, a.u.

DSP-specific customizations of embedded RISC-V cores that

Customizations with CodAL and Codasip studio shorten the time to market by providing out-of-the-box SDK and HDK tools and more compact core description. The table lists the code size and the human effort required to implement the described DSP customizations.

HW module	Time to implement in CodAL	Lines of CodAL code	Lines of code in Verilog
1D FFT accelerator (256 samples)	2 person-weeks	500	2300
1D FIR filter	3 person-days	150	670
1D Median filter	3 person-days	160	1180
CORDIC module	3 person-days	210	600

tackle several representative DSP algorithms have improved the performance and energy consumption by 14.4x & 0.27x (FFT), 14.4x & 0.1x (FIR), 30x & 0.03 (Median filtering) and 24.3x & 0.08x (Cordic), all at reasonable silicon area cost.

