Re-targetable C/C++ LLVNI

compiler for RISC-V

/denek Prikryl, CTO

- Scaling is failing

For about 50 years the semiconductor industry has relied on
shrinking silicon geometries to achieve greater design
complexity and processor performance for an acceptable cost.
This shrinking has been most famously described by Moore’s
Law and the less wellknown Dennard Scaling. This virtuous and
predictable scaling is broken — so how can we achieve
improvements in performance in the future?

Old manual wa Automated the Codasip way
y
GGC Tool chain based on LLUM
Manual open source ® & Automatic generated
{ <) changes GNU e o 0 from CodAL
OO p ]
o O g 9
= I = o Q
= O =
— o, o 2
Own 1SS o o
rg"m Manual Auto
UvVM
Verification Verification oo :
Manual environment and § % o Automatic +?§:E|:;:Efl_
m writing stimuli creation £ 0
a0
®o T _ ——
oTl Traditional RTL & tﬂ natic #,-F' Pt kb Iﬁﬂx a
é RTL design % 1 from CodAL
o = A

- Customizable RISC-V processors

Differentiate with Codasip Studio
Configure / Modify
Using CodAL architecture description language

Your application software
o e

Codasip Studio

'« LLVM C/C++ compiler
I IA/CA models simulator

Debuqgger
Profiler

Codasip RISC-V

customizable IP Profiling/Analysis

|A model CA model

RTL

Testbench

EDA scripts

UVM environment

In CodAL
high-level lanqguage

| -
2
@
| -
)
-
)
D

- Re-targetable C/C++ LLVM

Codasip uses LLVM as a base line.

LLVM is the re-targeted based on the CodAL processor
description.

Beside the C/C++ compiler, Codasip generates
C/C++ code

- LLVM assembler, disassembler
- LLVM linker, binutils

Frontend

- LLVIVI debugger (_LDB) Optimizer

Complete SDK/toolchain is generated.

Backend

Assembly or object file

® Codasip

-> Benefits and features

CodAL processor description serves as an input to the

generator
Generator extracts:

« Behavior of every single instruction in a form ot a graph

« Architectural and microarchitectural features for a
scheduler or reqgister allocation

« Application binary interface

« Peephole and other optimizations

Informative report is generated

Designer may see which instructions are recognized and how

they will be used

C/C++ compiler uses the instructions automatically

No need to change the C/C++ coo

IT an instruction is too complex, t

e

Nen.

« Intrinsic is automatically generated

« User may use the instruction via the intrinsic or inline

assembly

- Performance and code size

LLVVM Vanilla as a base line

« GCC as well as Codasip
LLVM is then compared
relatively to it

Coremark compiled for
performance

Dhrystone is compiled using
legal arguments only

Codasip outperforms both,
GCC as well as LLVM Vanilla

« Can be improved further
using custom compute
with Codasip Studio

Relative Performance

Comparison
(higher is better)

2,0

2

1,0
d

. Nl B
0

Coremark Dhrystone

mLLVM Vanilla mGCC mLLVM Codasip

LLVVM Vanilla as a base line

« GCC as well as Codasip
LLVM is them compared
relatively to it

Embench-iot used as a
benchmark

The same optimization
options are used for the
compilation across compilers

Codasip produces smaller
applications

« Can be improved further
using custom compute
with Codasip Studio

Relative Code Size

Comparison
(lower is better)

1,2

0,8
0,6
0.4
0,2

Embench-iot

mLLVM Vanilla wmGCC mLLVM Codasip

www.codasip.com



