
HAL Id: cea-03158876
https://hal-cea.archives-ouvertes.fr/cea-03158876

Submitted on 4 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A RISC-V ISA Extension for Ultra-Low Power IoT
Wireless Signal Processing

Hela Belhadj Amor, Carolynn Bernier, Zdenek Prikryl

To cite this version:
Hela Belhadj Amor, Carolynn Bernier, Zdenek Prikryl. A RISC-V ISA Extension for Ultra-Low
Power IoT Wireless Signal Processing. IEEE Transactions on Computers, Institute of Electrical and
Electronics Engineers, 2021, pp.1-1. �10.1109/TC.2021.3063027�. �cea-03158876�

https://hal-cea.archives-ouvertes.fr/cea-03158876
https://hal.archives-ouvertes.fr

1

A RISC-V ISA Extension for Ultra-Low Power
IoT Wireless Signal Processing

Hela Belhadj Amor, Carolynn Bernier and Zdeněk Přikryl

Abstract—This work presents an instruction-set extension to the open-source RISC-V ISA (RV32IM) dedicated to ultra-low power
(ULP) software-defined wireless IoT transceivers. The custom instructions are tailored to the needs of 8/16/32-bit integer complex
arithmetic typically required by quadrature modulations. The proposed extension occupies only 2 major opcodes and most instructions
are designed to come at a near-zero energy cost. Both an instruction accurate (IA) and a cycle accurate (CA) model of the new
architecture are used to evaluate six IoT baseband processing test benches including FSK demodulation and LoRa preamble detection.
Simulation results show cycle count improvements from 19% to 68%. Post synthesis simulations for a target 22nm FD-SOI technology
show less than 1% power and 28% area overheads, respectively, relative to a baseline RV32IM design. Power simulations show a peak
power consumption of 380 µW for Bluetooth LE demodulation and 225 µW for LoRa preamble detection (BW = 500 kHz, SF = 11).

Index Terms—RISC-V ISA extension, IoT, software-defined radio, ultra-low power (ULP) transceiver architecture, Bluetooth, LoRa.

F

1 INTRODUCTION

W IRELESS Internet of Things (IoT) connectivity solu-
tions have been gaining exponential adoption rates

and enabling new applications in a diverse range of verticals
such as transportation, health, industry and agriculture. The
huge diversity of IoT use cases has naturally spurred the de-
velopment of dedicated communication protocols, from the
physical layer to the networking layers. Indeed, since IoT
endpoints are typically energy constrained devices, tailor-
ing the communication protocol to an application’s specific
needs is a necessity, amplified by the fact that transmitting
data is often the principal energy expenditure in the applica-
tion’s power budget. Thus, a wide variety of communication
protocols have been proposed, each targeting a unique set
of specifications: communication range, data bandwidth,
power consumption, latency, up/down-link transmission
requirements, target transceiver cost, and so on. Focusing
on the physical layer (PHY), this has led to the emergence of
a large number of IoT standards (and families of standards)
such as RFID, Bluetooth, LoRa, Sigfox, EnOcean, Narrow-
Band IoT, EC-GSM, LTE-M, IEEE 802.15.4-2015, IEEE 802.11,
etc.

Within this huge application space, many battery-
powered and energy harvesting IoT solutions require ultra
low-power integrated circuits (IC), and in particular in the
wireless transceiver subsystem. To reach this goal, these
circuits have until now mostly been implemented using
dedicated hardware designs. Unfortunately, this leads to
designs with very limited wireless reconfigurability, an im-
portant drawback in the context of quickly evolving IoT
standards. Proprietary communication systems or those that
are dedicated to long in-field deployment life-times, such as
industrial or satellite IoT, also require reconfigurability to

• Hela Belhadj Amor is now with Dolphin Design, Grenoble, France.
• Carolynn Bernier is with the Digital Systems and Integrated Circuits De-

partment of CEA, LIST, Grenoble, France. Email: carolynn.bernier@cea.fr
• Zdeněk Přikryl is with Codasip s.r.o., Brno, Czech Republic.

Manuscript received ; revised .

adapt to changing protocol requirements. Finally, hardware
transceivers leave little room for PHY-layer experimentation
which is necessary to drive innovation in the field of next-
generation radio protocols.

Thanks to the important improvements in performance,
cost and power consumption of DSP and FPGA technolo-
gies, new software-defined radio (SDR) applications have
recently emerged [1]. For example, authors in [2] and [3]
use FPGA platforms to build agile cellular transceivers,
from 3G to 5G. The recent development of small and nano-
satellite systems has spurred interest in SDR for space-
borne multimode transceivers [4], [5], [6]. Closer to our
application, authors in [7] propose a reconfigurable IoT gate-
way able to address the multiplicity of IoT communication
standards. Unfortunately, the power consumption figures of
such systems, which typically couple a DSP and/or FPGA
chip for baseband and/or digital front-end processing with
an RF/analog front-end chip, are orders of magnitude above
those required by most IoT endpoints. This is due both to
the energy cost of transmitting signals between integrated
circuits but also, and more importantly, to the fact that these
circuits generally offer too much reconfiguration potential
and are therefore over-specified for energy constrained IoT
nodes.

A single-chip software-defined radio-frequency (RF)
transceiver is therefore highly desirable provided it respects
the power budget of the IoT wireless subsystem. While
unfeasible until now, several current trends, including the
heterogeneous multi-core paradigm and the uptake by in-
dustry of the easily extendable open source RISC-V ISA [8],
along with the continued improvements in CMOS scaling,
concur to show that this idea’s time has come.

To this end, this work makes the following contributions:

• We identify the digital processing requirements typi-
cal of IoT wireless baseband signals;

• We propose an instruction set extension for the RISC-
V ISA tailored to the needs of wireless DSP and that

2

Fig. 1: Simplified architecture of software-defined RF re-
ceiver (reproduced from [9])

achieves high cycle count reductions with ‘near zero’
power overhead;

• Based on this new instruction set, a core dedicated to
wireless DSP and that is fast and powerful enough to
process complex sample streams in real-time while
consuming only a fraction of the power of the com-
plete ULP transceiver subsystem is designed;

• IoT protocol test bench simulations show important
cycle count improvements with more than 50% ob-
tained for the LoRa demodulation algorithm;

• Power consumption estimations based on post-
synthesis simulations of the proposed core prove
the feasibility of ultra-low power for two of the
most popular IoT wireless protocols, Bluetooth LE
and LoRa, and this even for one of the most
computationally-intense versions of the LoRa proto-
col (SF = 11, BW = 500kHz). This is achieved
even without dynamic voltage scaling.

We believe that our work paves the way to making ultra-
low power software-defined radio a reality.

The rest of the paper is organized as follows: in Sec-
tion 2, we discuss related work in the fields of ULP wireless
signal processors and instruction set extensions for DSP. In
Section 3, we discuss the properties of wireless DSP and
the opportunity offered by the RISC-V ISA. In section 4, we
present a RISC-V ISA extension for IoT signal processing.
Six wireless test bench algorithms are described in Section 5
and evaluation results using the proposed architecture are
presented in section 6.

2 RELATED WORK

2.1 Processors in the IoT landscape
In an embedded IoT platform, the application processor
is responsible for executing the IoT application’s task, e.g.
read, store, process and decide when to transmit the sensor
data. The large diversity of IoT applications and their often
extreme demands in terms of power efficiency has spurred
the development of a wide range of application processors.
Even if we limit the discussion to those employing a variant
of the RISC-V ISA, it is possible to find IoT processors
targeting a power consumption in the nW range for battery-
less applications [10], cores targeting the µW and mW range
[11], cores specifically designed for flexibility over the 2-
200 MHz range [12], and multi-core platforms targeting
computing intensive edge applications [13].

In addition to this diversity, a recent trend has con-
sisted in the development of heterogeneous, multi-core
IoT platforms [11], [14], [15], [16] capable of offloading
specific, high intensity tasks from the main application
processor (e.g. security features, deep learning algorithms).

Since the processing of wireless signals is particularly de-
manding (to the point where it has historically typically
been done using dedicated hardware), the trend towards
heterogeneous multi-core platforms is an opportunity which
can potentially also be seized by software-defined wireless
transceivers. The challenge of developing such a tailor-made
core capable of meeting the hard real-time constraints and
high complexity of wireless DSP in an ultra-low power
context is the focus of this present work.

2.2 A tailor-made core for ULP wireless DSP

If, traditionally, the digital processing blocks in ULP
transceivers have been implemented using dedicated or
reconfigurable hardware, replacing these blocks by a pro-
cessor implies carefully studying the energy cost of moving
to software. This move to software has long been studied in
high-end communication systems such as cellular and high
data-rate systems where the flexibility required to address
multiple communication standards has been a long-time
requirement [17], [18], [19].

For ULP transceivers, where the power budget allowable
to the processing of the digital baseband (DBB) signals is on
the order of hundreds of µW to a few mW, the need for flex-
ibility has partly been addressed by reconfigurable designs
compatible with a limited number of wireless standards,
typically two or three, often by sharing hardware blocks
[20], [21], [22], [23]. Thus the ULP design space is still far
from having achieved the flexibility offered by the software
defined radio (SDR) paradigm, limiting the deployment
potential of a given design in terms of addressable standards
but also limiting the potential to create and deploy new
digital baseband algorithms.

Conscious of this need, dedicated micro-architectures for
ULP SDR have recently been proposed by [24] and [25]. To
achieve ultra-low power, both of these approaches focus on
the reduction of the SDR processor’s working frequency.
To this end, [24] proposes an architecture based on a cus-
tom Single Instruction Multiple Data (SIMD) unit, with a
datapath that can be reduced to very small bit widths (4
or 8 bits), associated to a scalar unit. A different approach
is explored in [25] which presents a 32-bit scalar architec-
ture with application-specific instructions that reduce the
number of required instructions from 10 to 4 for a typical
frame detection algorithm. In both of these works, the choice
of designing a dedicated machine implies that algorithms
must be hand-coded in machine specific assembly code.
This excludes the reuse of widely available software tool
chains and DSP libraries. An alternative approach was pro-
posed in our previous work [9] with a strategy based on
small general purpose micro-architectures (including RISC-
V). Thanks to advanced CMOS scaling and sufficiently high
clocks, we showed that a timing and power consumption
performance compatible with ULP IoT protocols can be
achieved on these platforms, even without voltage scaling.
However, these results were obtained for a relatively simple,
mostly real-valued wireless test bench. Other IoT signaling
protocols require higher computational resources due to the
extensive use of complex signals. To address these higher
complexity protocols, this present work exploits processor
ISA customization.

3

A tailor-made core for ULP SDR therefore must be fast
and powerful enough to process, in real-time, the complex
sample stream produced (in RX) or required (in TX) by the
transceiver front-end, while consuming only a fraction of
the power of the complete transceiver subsystem, i.e. on the
order of hundreds of µW to a few mW. To take advantage of
the variations of complexity over time, the core must be able
to put itself to sleep, ideally in a single cycle, while waiting
for the next available block of samples. To further minimize
power, the ROM section of the core’s TCM (Fig. 1) should
be implemented using either low-retention-current SRAM
or using a high-speed embedded non volatile technology.
In this way, the core’s voltage supply can be switched off
between successive frame transmissions (relatively rare in
IoT systems). This also means that the core does not need to
be optimized for leakage.

2.3 Instruction set extensions for DSP

While the idea of extending the ISA of a processor to
customize for a specific application is not new, in each case,
the challenge consists in finding the optimal set of useful in-
structions. In the ultra-low power context which is ours, the
challenge is further increased by ensuring that the proposed
set comes at a near-zero power cost. Finally, the hard real-
time constraints specific to wireless DSP must imperatively
be met, implying that the speed burden imposed by the
larger extended core must be acceptable.

The RISC-V instruction set architecture (ISA) is a stan-
dardized and open architecture specifically designed to
support extensive user-level ISA extensions and specialized
variants [8]. The RISC-V ISA is defined as a base integer ISA,
which must be present in any implementation, plus optional
standard and non-standard extensions. The base ISA is care-
fully restricted to a minimal set of instructions allowing for
extremely energy efficient hardware implementations. Thus,
highly energy efficient application-specific processors can be
designed by adding a set of carefully chosen extensions,
either standard or non-standard, to the base ISA. Partial
customization of a standard ISA lowers the design effort
to develop the necessary software tools, allows the use of
a known, well tested architecture as a starting point to
the new design and simplifies the reuse of existing DSP
libraries.

For these reasons, the authors in [26] propose a RISC-
V extension to the RV32IM ISA (32-bit integer base ISA
with multiplication extension) for SDR. Similarly as in this
work, the authors propose a set of custom instructions to
accelerate complex-number arithmetic. To represent the real
and imaginary parts of a complex number without changing
the addressing mode and data width, 32-bit complex-data
words are considered vectors of two 16-bit words. While
the authors propose a number of instructions that are use-
ful in typical complex DSP algorithms, such as complex
ADD/SUB/MUL as well as complex radix-2 butterfly, this
last being extensively used in FFT algorithms, the need
for instructions such as CSMUL (complex-scalar multiply),
CONJ (complex conjugate) or packed 8-bit arithmetic are
questionable, as will be discussed below. By limiting the
dynamic range of their instructions to 16 bits, the authors
limit the applicability of their extension to low to medium

sensitivity protocols. Finally, no discussion on the impact of
these new instructions on the processor’s power consump-
tion is provided.

At the time of this writing, the RISC-V community is
considering the standardisation of a ”P” extension intended
for DSP acceleration and which includes packed-SIMD in-
structions targeting the segmentation of the integer registers
into either two 16-bits or four 8-bits words. Packed-SIMD
instructions require modifying the ALU to simultaneously
work on vectors of two or four elements. Unfortunately,
typical DSP ISA extensions, such as the one provided by
[27] have a large instruction count, potentially larger than
the base RISC-V ISA, implying a prohibitive energy cost.
And of this large number of instructions, many are of little
practical use in RF algorithms, as will be discussed below.

An alternative RISC-V extension is proposed in [28]
targeting the processing of IoT real sensor data. The number
of additional instructions is intentionally limited in order to
minimize the impact on the core’s power consumption (only
+9% overhead with respect to the base RISC-V design.) As
discussed at length in our previous work [9], the vectorial
hardware extensions proposed are of limited interest for
complex (versus real) data and the proposed hardware
loop mechanism can rarely be used in our algorithms
which typically contain conditional branches. However, for
completeness, we included comparative results using this
architecture in Tables 3 and 5. Our work in [9] also contains
a detailed analysis of the advantages of RISC-V-based archi-
tectures over ARM-based ones for our targeted application.

3 WIRELESS BASEBAND DIGITAL SIGNAL PRO-
CESSING

In this section, we introduce the background information
related to wireless digital signal processing necessary for
understanding the design strategy developed in Section 4.
Indeed, a deep understanding of the requirements of such
algorithms is required to design a minimal set of useful
instructions.

3.1 Software-defined ULP receiver architecture
Focusing on the receiver, which is computationally more
complex than the transmitter, a software-defined RF ar-
chitecture for ULP IoT signaling schemes is proposed in
Figure 1. Indeed, while IoT PHY protocols differ in terms
of modulation, signaling rate, coding scheme, etc., narrow-
band signaling schemes, i.e. occupying a maximum ana-
log bandwidth on the order of a few MHz, share simi-
lar characteristics thus allowing the use of reconfigurable
dedicated circuits in the RF, analog and digital front-end
(DFE). The DFE performs filtering, decimation, optional
down-conversion from an intermediate frequency (IF) and
automatic gain control (AGC).

However, the wide variety of modulations and signaling
schemes pleads for a software implementation of the base-
band DSP operations required by each protocol.1 Placing the

1. Other important parts of physical layer receiver algorithms (de-
interleaving, decoding, CRC, etc.) are not addressed in this work since
they operate on demodulated data. Indeed, a DBB processor with a
high frequency clock should be able to handle the delay specifications
of these algorithms without difficulty.

4

TABLE 1: Proposed ISA Extention for Wireless DSP
Mnemonic Instruction Operation

ADDC16 rd, rs1, rs2, imm 16-bit Addition & Shift Right rd.L = (rs1.L + rs2.L)>>imm
Arithmetic Immediate rd.H = (rs1.H + rs2.H)>>imm

SUBC16 rd, rs1, rs2, imm 16-bit Subtraction rd.L = (rs1.L - rs2.L)>>imm
rd.H =(rs1.H - rs2.H)>>imm

CRASC16 rd, rs1, rs2, imm 16-bit Cross Add & Sub rd.L = (rs1.L + rs2.H)>>imm
rd.H = (rs1.H - rs2.L)>>imm

CRSAC16 rd, rs1, rs2, imm 16-bit Cross Sub & Add rd.L = (rs1.L - rs2.H)>>imm
rd.H = (rs1.H + rs2.L)>>imm

SRAC16 rd, rs1, rs2 16-bit Shift Right Arithmetic rd.L = rs1.L>>rs2
rd.H = rs1.H>>rs2

SRAIC16 rd, rs1, imm 16-bit Shift Right Arithmetic Immediate rd.L = rs1.L>>imm
rd.H = rs1.H>>imm

SLLIC16 rd, rs1, imm 16-bit Shift Left Logical Immediate rd.L = rs1.L<<imm
rd.H = rs1.H<<imm

MUL2ADD16-32 rd, rs1, rs2, imm Two ”16x16” and Signed Addition rd = [(rs1.L * rs2.L) + (rs1.H * rs2.H)]>>imm

MULC8-16 rd, rs1, rs2, H1, H2, C, imm

if C=0: 8-bit complex multiplication, if Hx = 1, {ix,qx} = {rsx.B2,rsx.B3}
conj=1 if Hx = 0, {ix,qx} = {rsx.B0,rsx.B1}

if C=1: 8-bit complex conjugate multiplication, rd.L = (i1 * i2 - conj * q1 * q2)>>imm
conj=-1 rd.H = (i1 * q2 + conj * i2 * q1)>>imm

MULC16 rd, rs1, rs2, C if C=0: 16-bit complex multiplication, rd.L = (rs1.L*rs2.L)>>16 - conj*(rs1.H*rs2.H)>>16
conj=1

if C=1: 16-bit complex conjugate multiplication, rd.H = (rs1.H*rs2.L)>>16 + conj*(rs1.L*rs2.H)>>16
conj=-1

MULC16-32 rd1, rd2, rs1, rs2, C if C=0: 16-bit complex multiplication, rd1 = (rs1.L * rs2.L - conj * rs1.H * rs2.H)
conj=1

if C=1: 16-bit complex multiplication, rd2 = (rs1.H * rs2.L + conj * rs1.L * rs2.H)
conj=-1

if rs = 0, rd = 0
CLRSB rd, rs Count leading redundant sign bits if rs > 0, rd = clz (rs) - 1

if rs < 0, rd = clz (∼ rs) - 1
PACK-INIT rs Initialize packing barrel-shifter r sh pack = rs

Pack a 16 bit complex value on 32 bits Ival = rs1 << r sh pack
PACK rd, rs1, rs2 after removing r sh pack redundant sign bits Qval = rs2 << r sh pack

rd = Qval[31:16] :: Ival[31:16]

Shorthand definitions:
r.B3→r[31:24], r.B2→r[23:16], r.B1→r[15:8], r.B0→r[7:0], r.H→ r[31:16], r.L→ r[15:0]
“∼” is bitwise not, “::” is concatenation, “clz” returns the number of leading zeros of an unsigned 32-bit value.

hardware/software frontier at the output of the DFE also
means that the digital baseband (DBB) processor operates
on sample streams that have been well decimated from the
ADC’s high sampling rate. This complex sample stream is
produced at a constant sample rate by the DFE and must be
processed in real-time since the exact arrival time of a frame
is unknown. To this end, communication mechanisms, such
as interrupts, sample buffer and feedback control signals,
must be inserted between the DFE and the DBB. The high-
level features of the ULP receiver architecture are summa-
rized in Figure 1.

3.2 Properties of wireless IoT signal processing

At the input of the baseband signal processing algorithm,
the quadrature (complex) signal, DBBIn[k] (Figures 4, 5 and
7), has typically been well filtered and decimated. Therefore,
in ideal minimum signal-to-noise (SNR) conditions, a signal
dynamic range of only a few bits (2 to 4 bits, or approxi-
mately 14 to 26 dB) is sufficient for modulations commonly
employed in ULP IoT signaling schemes. In practice how-
ever, more bits are often required either to address non-ideal
demodulation algorithms, but also to allow for front-end
imperfection compensation mechanisms. We therefore con-
sider that the input signal, represented as signed integers,
occupies a dynamic range of 8 bits maximum for each of
the in-phase and quadrature-phase components. We also
assume that, after the decimation stages of the DFE, the

received signal is over-sampled with typical ratios on the
order of 1 to 8.

In wireless DSP, the received signal is often a combi-
nation of a small useful signal and a large noise signal,
especially when receiving a minimum energy signal (i.e.
receiver sensitivity). This means that the useful signal can
be contained in the least significant bits of the received
signal. Any further quantification of the signal, for example
by restricting the normal increase of dynamic range at the
output of mathematical operators, can have an important
impact on the receiver’s sensitivity. Thus, when mapping a
wireless DSP algorithm onto a programmable platform with
fixed data words of either 8, 16 or 32 bits, the programmer
must have a clear view of the evolution of the signal’s
dynamic range among the sequence of mathematical oper-
ations. Preliminary system-level simulations are required to
evaluate the impact on sensitivity of suppressing low order
bits, an operation which can add significant quantification
noise if applied carelessly. Similarly, care must be taken with
high order bits since signal overflows must be avoided at
all costs. Indeed, if an overflow occurs, simply dropping it
creates important distortion whereas saturation injects non-
linearity. In order to avoid wasting precious CPU cycles
checking for overflows, system simulations can be used
to detect if the probability of overflow is important, e.g.
if an additional bit is required at the output of a sum or
subtraction operation. Luckily, since signals rarely occupy

5

the entire dynamic range, this is often not necessary.2 In
the following, we propose mechanisms for performing both
static and real-time dynamic range adjustments.

Concerning the evolution of dynamic range, a general
observation is that the very first mathematical operation
in a wireless baseband DSP algorithm is often a complex
multiplication, e.g. a correlation with a reference signal. In
many algorithms, a second multiplication quickly follows,
leading to a signal dynamic range that quickly reaches 32
bits with little possibility for later reducing it back to 8
or 16 bits unless automatic gain control is used to ensure
that the useful signal occupies the entire targeted dynamic
range. For this reason, in the proposed extension, the only
instruction which addresses 8-bit data is a complex mul-
tiplication instruction. Finally, we observe that, if a SIMD
instruction has equal input and output dynamic range, it
can only be used in very specific parts of the wireless
DSP algorithm (e.g. FFT computation). The design strategy
behind the proposed ISA extension is based on the sum of
the considerations presented in this section.

3.3 The RISC-V opportunity for wireless baseband DSP

As shown in the previous section, a 32 bit processor is well
adapted to the evolution of signal dynamic range in wireless
DSP. The absence of fixed point instructions or FPU also
results in extremely low gate-count cores, able to function
at high frequency with high energy efficiency. While the
RISC-V ISA authorizes many opcode sizes, in our work,
only 32 bit instructions are used in order to limit the decoder
complexity. In particular, the RV32IM ISA uses only 15 major
(7-bit) opcodes, with four major opcodes expressly reserved
for custom extensions. This offers considerable flexibility for
defining complex instructions thanks to the 25 remaining
bits. In the proposed extension, this flexibility is exploited
in two ways. The importance of statically controlling the
dynamic range of the signal throughout the algorithm is
addressed in most of our instructions thanks to the possi-
bility of removing bits from the computed result. Opcode
flexibility can also be used to define instructions in which
there are more than 1 destination register or to add useful
control bits.

3.4 Exploring the instruction jungle

In order to avoid needlessly increasing the core’s size and
complexity, many instructions which might have some util-
ity in certain algorithms were excluded when they did not
seem clearly indispensable. Here, we review a number of
instructions that have been proposed in the related literature
and which were rejected for the reasons described below.

General purpose DSP extensions such as [27] typically
propose a number of variants for each mathematical opera-
tor in order to deal with overflows. ‘Halving’ variants, such
as RADD, conserve the overflow by dividing the output by 2
(suppressing the LSB). We adopted a more general approach
by allowing the suppression of imm bits from the output,

2. The system-level evaluation of the impact of dynamic range ad-
justments on performance is specific to each implementation of each
given communication standard. It is therefore beyond the scope of this
present work.

with the case imm=0 corresponding to dropping the over-
flow. Similarly, saturating operators are unnecessary since
saturation must be avoided by design, i.e. careful algorithm
planning. MIN and MAX instructions were also rejected
because, in typical algorithms in which the minimum or
maximum value of an array of values is required (e.g. when
looking for a correlation peak), the corresponding array
index is often also required. Thus the comparison performed
by MIN/MAX needs to be performed a second time in order
to memorize the index of the running maximum value hence
resulting in no performance improvement.

The authors in [26] propose a number of instructions for
accelerating complex arithmetic. In particular, a complex-
scalar multiply (CSMUL) instruction is proposed. This in-
struction was rejected after observing that, in our experi-
ence, in cases where the complex signal is multiplied by a
real value, the algorithm designer can often opt for power
of two multiplications (and divisions) that can better be
implemented as shifts. The authors also propose a complex
conjugate instruction (CONJ) which we rejected since this
operator can easily be substituted either by a sign change
in equations or through the use of a control bit in complex
multiplication instructions. Also, we observe that the ‘con-
ditional branch if less than’ instruction (CBLT) proposed by
[25] is already present in RV32I.

Given the constantly decreasing surface/power costs of
arithmetic operators in advanced technologies, it is tempt-
ing to imagine the possibility of single-cycle 32-bit complex
instructions (sum, subtraction, multiplication). This requires
duplicating the ALU in order to simultaneously handle
real and imaginary 32-bit data. This also requires adding
3 additional 32-bit multipliers in order to perform the four
simultaneous multiplications required by the multiplication
of two complex numbers. While the corresponding surface
increase might seem like an acceptable compromise in view
of the expected increased computing efficiency, in prac-
tice, this approach suffers from the following limitations:
if memory access is 32-bit, computing efficiency is limited
by read/write cycles which require two cycles for complex
data; reading and writing complex data to the register file in
a single cycle impacts the number of input and output ports
of this crucial block; and finally, since complex operations
require six 32-bit operands which cannot be encoded in
a 32-bit opcode, instructions must make implicit assump-
tions as to the location of data in the register file. This
in turn complicates register allocation. For these reasons,
this approach was rejected. Finally, after having carefully
considered the pros and cons of each instruction, the needs
of our algorithms, and the targeted system specifications,
we developed the ISA extension presented below.

4 RISC-V ISA EXTENSION FOR WIRELESS IOT
DSP
Since existing ISA extensions are not appropriate for our
needs, we adopt a clean slate approach to designing our
DSP extension. Our primary driver being the reduction of
energy consumption by lowering the number of CPU cycles
required to perform a given task, we adopt the following
philosophy: we identify the smallest possible set of instruc-
tions that are of high value in reducing the cycle count of

6

typical wireless baseband DSP algorithms. In particular, we
focus on instructions that come at a low energy/surface cost
thanks to the replacement of existing hardware operators
by reconfigurable hardware in the execution stage of the
pipeline. We propose 14 instructions which can be encoded
using only 2 major opcodes, Table 1.

4.1 Complex arithmetic instructions
With data that is well adapted to 8, 16 or 32-bit word lengths,
we propose a representation of 32-bit data words as vectors
of either two complex values {q2, i2, q1, i1} with 8-bit ele-
ments or one complex value {q1, i1} with 16-bit elements,
as illustrated on Figure 2. The existing arithmetic operators
of the ALU (adder, barrel-shifter) can easily be reconfigured
to perform two simultaneous 16-bit operations rather than
a single 32-bit one. Thus, a packed SIMD approach is
proposed for complex signed sum (ADDC16), subtraction
(SUBC16), crossed sum/subtract (CRASC16), and crossed
subtract/sum (CRSAC16), these last being commonly used
in FFT butterfly algorithms. Thanks to a reconfigurable
barrel-shifter, complex 16-bit shift instructions are also in-
cluded: SRAC16 and SRAIC16 perform two arithmetic right
shifts filled with the sign-bits Rs1(31) and Rs1(15) whereas
SLLIC16 performs two 16-bit logical left shifts.

As discussed previously, in order to avoid losing cycles
checking for overflows, we assume that the DSP algorithm
designer has a clear view of the signal’s dynamic range
requirements at all steps of the algorithm. This assumes,
as is commonly performed even for hardware implementa-
tions, that preliminary system-level simulations were able
to detect the impact of suppressing low and high-order bits
at the output of each operator. Thus, to adjust the signal
dynamic range as needed, most of our proposed instruc-
tions have an immediate operand, imm, which performs an
arithmetic right shift of imm LSB bits from the calculated
outputs. For maximum flexibility, imm is encoded using 4 or
5 bits for 16 or 32 bit-width data, respectively. To perform
this shift operation, we reuse the ALU’s existing recon-
figurable barrel-shifter. This additional logic comes with a
timing penalty which affects the core’s maximum working
frequency. However, as will be shown below, this trade-off
is clearly acceptable in view of the avoided dedicated shift
cycles.

4.2 Reconfigurable multiplication instructions
Complex multiplication is one of the most crucial oper-
ations in wireless signal processing. To this end, if the
existing 32-bit multiplier is replaced by a reconfigurable
one (reconfigurable multipliers come at a very low addi-
tional energy/surface cost [29]), several useful instructions

Fig. 2: 8x8 bit Signed Complex Multiplication where H1=1
and H2=0

can be proposed which execute, in a single cycle, the six
mathematical operations required by a complex multipli-
cation. As shown in Figure 3, four partial products, {p00,
p01, p10, p11} are computed whose outputs are combined
differently depending of the multiplication wanted: real or
complex. Thus, while still able to perform the multiplication
operations of the M extension of RV32 (namely, MUL and
MULH), the multiplier can be reconfigured to perform a
16-bit complex multiplication in a single cycle. Note that
since all multipliers operate on positive numbers, absolute
values and sign adjustments must be calculated prior and
after multiplication, respectively. We propose two complex
multiplication variants: MULC16 performs four 16-bit mul-
tiplications and then retains the 16 most significant bits of
the sum or difference of these four products. The 2x16-bit
complex result is placed in the destination register. Note that
any overflow bit is ignored. The second variant, MULC16-
32, performs the same operation but keeps the 32-bit output
dynamic range. The two 32-bit results are stored in two
destination registers {rd1, rd2}. In order to avoid adding
a write port to the register file, these two values are written
back in two successive cycles.

While not shown in Figure 3, the reconfigurable multi-
plier can also be programmed to execute a MUL2ADD16-
32 instruction which performs two signed 16-bit multipli-
cations and sums the two 32-bit results. This can be used
for example to find the modulus of 16-bit complex values.
Finally, the MULC8-16 instruction performs four signed 8-
bit multiplications, a sum and a subtraction in a single
operation to produce a 16-bit complex output, as depicted in
Figure 2. Bits H1 and H2 select the upper or lower parts of
registers rs1 and rs2, respectively. For maximum flexibility,
rs1 and rs2 can be the same register. A final useful feature
consists in adding the control bit “C” to the three complex
multiplication instructions in order to compute the complex
multiplication with the conjugate value of the second source
operand (rs2).

4.3 Automatic gain control (AGC) instructions

While static (i.e. predictable) signal dynamic range adjust-
ments can be performed using the immediate operand, imm,
introduced previously, fast dynamic range adjustments of
the received signal are often necessary. This is due to the
highly dynamic nature of the wireless channel which im-
plies highly fluctuating signal and interference levels. This
means that, often, the useful signal does not fully exploit
the available dynamic range and can even be contained in
the least significant bits of a given word. In absence of auto-
matic gain control, every mathematical operator must avoid
introducing quantification errors, meaning that dynamic
range naturally tends to increase. This is particularly true of
multiplication operations which approximately double the
signal dynamic range. A cascade of several multiplication
operations will thus quickly lead to high cycle-count 32-bit
complex operations.

While an initial automatic gain control step is often
performed in the DFE in order to scale the received signal
to the dynamic range available at the DBB input, certain
algorithms might require secondary automatic gain control
in the DBB. This might be true e.g. if channel filtering is

7

abs abs abs abs abs abs

src1 src2 src1[31:16] src1[15:0] src2[31:16] src2[15:0]

src1b src2b src1b[31:16] src1b[15:0] src2b[31:16] src2b[15:0]

CASE: 32-bit real multiplication CASE: 16-bit complex multiplication

src1b[15:0] src2b[15:0]

p00[31:0]

src1b[31:16] src2b[31:16]

p01[31:0]

src1b[31:16] src2b[15:0]

p10[31:0]

src1b[15:0] src2b[31:16]

p11[31:0]

p10[31:0] p01[31:0]

px[32:0]

zeros[14:0]::px[32:16]
p11[31:0]

P[63:32]

px[15:0]::zeros[15:0]

p00[31:0]

P[31:0]

carry

Sign Adjust

P[63:0]

Product[63:0]

Sign Adjust of 4 partial products

p00[31:0]

q00[31:0]

p01[31:0]

q01[31:0]

p10[31:0]

q10[31:0]

p11[31:0]

q11[31:0]

q10[31:0] q01[31:0]

pimag[31:0]

×(−1)

q11[31:0]

q00[31:0]

preal[31:0]

CASE: MUL
Rd = Product[31:0]

CASE: MULH
Rd = Product[63:32]

CASE: MULC16
Rd = pimag[31:16]::preal[31:16]

CASE: MULC16-32
Rd1 = preal[31:0]
Rd2 = pimag[31:0]

Fig. 3: Reconfigurable multiplier. (The operator “::” represents concatenation.)

performed in the DBB. While automatic gain control can
be performed with existing instructions, we propose three
instructions dedicated to speeding up this task. The in-
structions provide an additional benefit of dealing with the
doubling of dynamic range caused by each multiplication
operation. Indeed, since 16 bits represent a comfortable
signal to quantification noise ratio of approximately 98 dB
and since a packed representation of a single 16-bit com-
plex value is perfectly adapted to a 32-bit architecture, we
propose to favour the 16-bit data representation during the
design of the DSP algorithm. We thus propose to accelerate
the task of applying AGC to 32-bit complex data in order
to produce packed 16-bit complex data. This means that, if
an operator produces complex 32-bit data, these instructions
can be used to effectively rescale the data onto a packed 16-
bit complex representation, this in order to exploit the 16-bit
complex instructions proposed previously.

To this end, we introduce three instructions: CLRSB
returns the number of redundant sign bits of a signed 32-bit
integer within a single cycle. This provides an efficient, low
gate-count alternative to an equivalent software implemen-
tation. The minimum value returned by the CLRSB instruc-
tion executed over a significant number of signal samples
represents the available unused dynamic range. Once this
measurement has been made, the PACK instruction packs
two 32-bit signed values onto a single 32 bit word, while
removing the r sh pack most significant bits (excluding the
sign bit) and then the 16 LSB of both input operands. The
r sh pack register is initialized by a single call to the PACK-
INIT instruction.

5 TEST BENCH DEFINITIONS

In this section, we present a set of DSP algorithms that
are commonly encountered in IoT communication schemes,

including some of the most popular IoT communication
standards such as Bluetooth LE [30], LoRa and Sigfox [31]. A
bare-metal C version of these algorithms was implemented
in order to evaluate the proposed ISA extension.

5.1 Software FSK demodulation
Gaussian frequency shift keying (GFSK) modulation is em-
ployed in many IoT physical layers, e.g. in the Sigfox and
Bluetooth protocols. Our first test bench is an FSK modu-
lated frame synchronization and demodulation algorithm,
illustrated on Figure 4 and presented in detail in [9]. This al-
gorithm conforms to typical IoT frame detection algorithms
in that it consists of (at least) three phases: a Preamble Search
phase to detect the frame’s presence, an SFD Search phase
to synchronize the receiver to the beginning of the frame’s
useful data, and a Demodulation phase which recovers the
data symbols. Computational complexity is often highest in
the “SFD Search” phase.

In this algorithm, we observe that the first operation
applied to the 8-bit input signal DBBIn is a complex mul-
tiplication, followed by averaging and IIR blocks. A mod-

z−1 conj.

× 1
N

OSR−1∑
k=0

z−k IIR | | Max.
Table

Val.

Ind.

OSR 1

0
=(z) Sign SFD

Search

Demodulated
symbols

DBBIn 8 16 16 16 32 SFDSearch

SFDFound

SFDFound
SFDFound

SFDFound

Fig. 4: Simplified view of FSK demodulation algorithm.
Double arrows indicate complex signals. The signal dy-
namic range is shown in lighter type (reproduced from [9]).

8

×

BaseSeq∗ 8

FFT
Shift

Right 3 abs()2 IIR ArgmaxVal.
Ind.

DBBIn 8 16 16 16 32 32 Index
val max

Fig. 5: Simplified view of LoRa preamble detection algo-
rithm. Double arrows indicate complex signals. The signal
dynamic range is shown in lighter type.

ulus operation extracts the correlation maximum values
as well as the corresponding sample indices required to
recover the symbol timing. Thus this algorithm can benefit
from the proposed MULC8-16, MUL2ADD16-32, ADDC16
and SUBC16 instructions. Several logical signals such as
SFDSearch and SFDFound are used to control the different
phases of the algorithm. Preliminary Matlab simulations of
the fixed-point algorithm were used to evaluate acceptable
bit scaling at the output of each mathematical operator. The
resulting evolution of signal dynamic range is shown in
lighter type.

5.2 LoRa preamble detection
LoRa is a spread spectrum, long range wireless communi-
cation protocol that targets ultra low power IoT terminals.
In the Frequency Shift Chirp Modulation (FSCM) employed,
symbols are encoded as one of N possible frequency offsets
of a linear time-varying frequency signal (chirp) referred to
as the base sequence, BaseSeq[k]. To ease FFT-based detec-
tion, and for a given occupied bandwidth, BW, N takes on
the value 2SF , with SF = {7, 8, 9, 10, 11, 12}. SF , referred
to as spreading factor, corresponds to the number of bits
encoded in each symbol. The ability to perform preamble
detection at ultra-low power is crucial in preamble-sampling
wireless protocols which have limited network-level syn-
chronization.

LoRa preamble detection can be performed by an algo-
rithm such as shown in Figure 5 [32], [33]. This algorithms
makes an intense use of complex arithmetic, especially in
the complex FFT block, and thus can greatly benefit from the
proposed MULC8-16, MULC16, MUL2ADD16-32, ADDC16,
SUBC16, CRASC16, CRSAC16 and complex shift instruc-
tions. Incoming 8-bit complex samples, sampled at a rate
equal to BW, are processed consecutively in blocks of 2SF

samples. The first operation consists in multiplying each
block of samples with the conjugate of the base sequence,
RxSig[k] × BaseSeq∗[k], before applying an FFT of size 2SF .
If a preamble signal is present, these operations produce a
peak in one of the FFT frequency bins. The complex signal
is then scaled down by 3 bits to avoid signal overflows in
the next operators. To improve SNR, the FFT magnitudes
are averaged using an IIR filter. Finally, the frequency index
corresponding to the maximum energy signal is extracted.
Results below are provided for SF = 7 and 11.

5.3 Fast Fourier transform (FFT)
Many modern wireless signal processing protocols require
a high throughput implementation of the FFT algorithm.
For example, this is true for the LoRa preamble detection
algorithm presented above but also in satellite IoT detec-
tion algorithms [6]. When N is a power of 2, the FFT is

an O(NlogN) algorithm to compute the N-point Discrete
Fourier Transform (DFT) of the finite duration sequence xn

and which is defined as:

Xk =
N−1∑
n=0

xne
− 2πi

N nk =
N−1∑
n=0

xnW
kn
N (1)

where W kn
N , referred to as the twiddle factors, xn and Xk

are all complex. While the basic FFT algorithm is the
radix-2 proposed by Cooley-Tukey, many other more ef-
ficient implementations, e.g. higher radix and split radix
algorithms with arbitrary sizes, are also employed [34]. In
all cases, these algorithms make an intense use of com-
plex arithmetic and particularly benefit from the MULC16,
ADDC16, SUBC16, CRASC16, CRSAC16 and complex shift
instructions. In this test bench, we focus on the N-point,
radix-4 decimation-in-frequency complex 16-bit FFT with
bit-reversed outputs. The FFT source code used in the test
bench is a port of the ARM CMSIS DSP library to RISC-
V [35].

5.4 Arctangent calculation using the CORDIC algo-
rithm

The Coordinate Rotation Digital Computer (CORDIC) al-
gorithm is an efficient, iterative algorithm used to approxi-
mate many trigonometric functions commonly employed in
wireless DSP algorithms, in particular in frequency tracking
loops [36]. In this test bench, the vectoring mode of the
CORDIC algorithm is used to approximate atan(y0/x0).
For each iteration i, with i = 0, ..., Niter − 1 and Niter the
total number of iterations, the CORDIC kernel performs the
operations described in equations (2) to (4):

xi+1 = xi − si.yi.2
−i (2)

yi+1 = yi + si.xi.2
−i (3)

zi+1 = zi − si.atan(2
−i) (4)

where si = +1 if yi < 0, and −1 otherwise. We observe
that the algorithm’s kernel essentially consists of complex
shifts and sums/subtractions. The test bench implements a
10 iteration CORDIC algorithm applied to 16-bit complex
input data.

5.5 Automatic gain control

In order to evaluate the performance gain of the AGC
instructions (CLRSB, PACK-INIT, PACK) over their software
equivalent, we propose the small test bench presented in
Figure 6. A first loop extracts the number of leading redun-
dant sign bits of 100 random complex numbers and keeps
the minimum value observed in the variable agc register.
A second loop then packs these 100, 32-bit complex val-
ues onto a 32-bit word. The baseline test bench uses the
efficient software implementation of the clrsb function from
[37] whereas the optimized test bench uses the dedicated
instructions presented in Table 1.

9

Fig. 6: test bench for evaluating AGC instructions

5.6 LoRa symbol demodulation
Our final test bench performs LoRa symbol demodulation
[32], [33]. Compared to the test bench presented previously
(section 5.2), this algorithm is employed after frame tim-
ing and frequency synchronization has been achieved. As
shown in Figure 7, it is similar to the one presented in
Figure 5 except for an additional complex multiplication
(which leverages the MULC16-32 instruction) with a carrier
frequency offset (CFO) compensation coefficient ĈFO, here
assumed to be a constant value for simplicity. An automatic
gain control operation is then applied to the 2SF samples
contained in the block in order to remove unused dynamic
range before packing the values back onto 16-bits. Here, 16-
bit signals are preferred over 32-bit ones in order to limit the
memory footprint of the algorithm. Finally, the IIR filter is
not used in this phase of the algorithm.

6 EVALUATION OF PROPOSED ISA EXTENSION

In this section, we present the evaluation platform used to
test the proposed extension, post-synthesis results of the
proposed extended core, and performance results using the
test bench algorithms.

6.1 Evaluation platform
The proposed instruction set extension was implemented
using the Codasip Architecture Language (CodAL), a high-
level architecture description language. Starting from an
existing RV32IM-compliant design, the Bk3 core [38], both
a functional (instruction accurate, IA) and an implemen-
tation (cycle accurate, CA) model of the extended micro-
architecture were developed. Since IA models provide fast
and flexible means for exploring instruction design space,

×

BaseSeq∗ 8

×

ĈFO 8

AGC FFT
Shift

Right 3 abs()2 Argmax
Val.

Ind.DBBIn 8

16 32 16 16 16 32

Fig. 7: Simplified view of LoRa demodulation algorithm.
Double arrows indicate complex signals. The signal dy-
namic range is shown in lighter type.

they were used extensively in the initial phase of this work.
The CodAL implementation of the ADDC16 instruction
is given for example in Figure 8. Indeed, even if the IA
model does not capture all of the details of the micro-
architecture, e.g. memory wait cycles, it provides cycle-
accurate results for single-cycle arithmetic instructions in
micro-architectures with register file forwarding. Multi-
cycle instructions, such as jump instructions or the proposed
“MULC16-32” instruction, can also be emulated using spe-
cific IA model function calls.

Results obtained using the CA model identify pipeline
stall penalties which, in our case, are mostly load-use haz-
ards due to the data intensive nature of our algorithms. Our
test benches were compiled and simulated using the au-
tomatically generated software tools provided by Codasip
Studio, Figure 9. In the results below, we provide both
IA and CA simulation results. A Verilog RTL description
was automatically produced from the cycle accurate CodAL
models of the base and extended Bk3 designs. Activity
files for the different test benches were produced using the
Questa simulator and the corresponding power simulations
were run on netlists obtained after logical synthesis of the
Verilog descriptions using Genus.

Performance gain results below are given with respect to
the baseline Bk3 processor. The Bk3 is a three-stage single
issue in-order pipeline processor intended for very small,
energy efficient implementations. Performance comparison
results, obtained using RTL-level simulations, are also given
for the RI5CY processor, an open-source RISC-V compatible
core with hardware and DSP extensions [28]. Except when
evaluating the RI5CY hardware extensions, the LLVM C
compiler is used to generate binary code for all cores.

While code size and memory access power consumption
are not explicitly mentioned in this paper, it is reasonable
to expect that, at first order, removing several instructions
by combining several operations into a single instruction
will produce smaller images. In all of our experiments, we
verify that the cycle count was reduced as expected thanks
to the new instructions. Both instruction and data memory

Fig. 8: Example of an ADDC16 instruction written in CodAL
language

10

Fig. 9: Codasip Studio [38]

access energy (at least its dynamic component) should also
improve proportionally to the improvement in cycle count.

6.2 Programming with the proposed extended instruc-
tion set
Since the instructions proposed in the ISA extension are too
complex to be automatically instantiated by the associated
compiler, the programmer can embed them in C code using
intrinsic functions. This feature is supported by major C
compilers like GCC and Clang, and is used regularly for
local code optimization. The mixing of assembly with stan-
dard C code eases the design of programs for the extended
core and the reuse of widely available software libraries.

6.3 Core synthesis results
In Table 2, we present post-synthesis simulation results of
a baseline Bk3 core and the same core augmented with
the proposed ISA extensions. Synthesis is performed at 100
MHz using the GF 22FDX technology with 8T RVT standard
cells with clock gating and simulations results are provided
for the TT corner at 25°C. Indeed, to minimize power
consumption, clock frequency must be kept to the minimum
possible. The choice of a sign-off frequency of 100 MHz is
justified by the complexity evaluation results (section 6.4)
and the corresponding necessary clock frequencies (section
6.5). A quick comparison with the RV32IMC-compatible
RISC-V core from [28] shows that the baseline Bk3 design
requires 33% less area. This is because the design in [28]
supports the compressed instruction set as well as a debug
module. Both were excluded from the Bk3 cores presented
in this work.

The proposed extension comes with a surface cost of
28%. Most of this increase is due to the replacement of the
32-bit multiplier used in the baseline Bk3 design by four 16-
bit multipliers in the proposed design. Indeed, the design-
ware library employed proposes multiplier blocks which
reduce area only by a factor of 2 when multiplier bit-width
is halved. Also, recall from Section 4.1 that a speed penalty
is expected due to the use of stacked arithmetic functions
in the execution stage. Indeed, we observe a reduction of
maximum frequency by a factor of two (from an initial max-
imum frequency above 1 GHz to approximately 650 MHz)
but which nevertheless remains well over our target sign-off
frequency which is in the range of 100 to 200 MHz. Synthesis
results are practically identical over this range. We observe
that power consumption for the LoRa preamble detection
test bench is slightly higher that of the FSK one due to the

TABLE 2: Comparison of different core architectures

Processor core [39]ab Bk3c Bk3 + ext.c
This work

ISA RV32IMC RV32IM RV32IM + ext.
Technology 22 nm FDX 22 nm FDX 22 nm FDX

Vdd [V] 0.75 0.8 0.8
Freq [MHz] 250 100 (sign-off) 100 (sign-off)

Power 4.6d 3.54e / 3.59f 3.56e / 3.59f
[µW/MHz]
Area [kGE] - 31.5 40.4 (+28%)

[mm2] 0.02 0.0063 0.0081
aBasic RISC-V design.
bSynthesis settings: SS, -40°C/125°C, 0.59 V
cSynthesis settings: SSG, -40°C, RVT, 0.72 V
dConvolution kernel test bench.
eFSK demodulation test bench. LLVM Flags: “-O3”
fLoRa preamble detection test bench. LLVM Flags: “-O3”

more frequent use of multiplication. Most importantly, since
it is our main design target, the extended core shows an
extremely low power consumption overhead relative to the
baseline core.

6.4 Test bench complexity reduction results
In this section, we analyze the performance gain obtained
for the test benches described in Section 5. We begin with
the FSK demodulation test bench. An identical version of
the code is compiled with LLVM and is executed on RI5CY
(without its hardware extensions) and the baseline Bk3
(CA and IA models). The average number of CPU cycles
required to process a single complex sample of the input
signal, DBBIn[k], is given in Table 3 for the three phases of
frame detection.

First, we observe as expected that the performance of
RI5CY and Bk3 (CA model) are similar. Also as expected,
IA model results are better because of load-use hazards
observed using the CA model. Next, to evaluate the Bk3 +
extended ISA, the test bench code was modified to include
the new instructions proposed in Table 1. The “MULC8”
instruction is used to calculate the initial 8-bit complex mul-
tiplication, “ADDC16” & “SUBC16” to calculate the average,
“SRAIC16” to reduce the dynamic range, and “MUL2ADD”
to compute the modulus. Thanks to these instructions and
in accordance with expectations, 13 cycles were avoided in
the Preamble and SFD phases of the program. We observe
that, in this algorithm, our proposed extension has a limited
impact (19% improvement in SFD phase) due to the low
computational complexity of the algorithm.

Unlike the previous test bench, the LoRa preamble de-
tection algorithm (Fig. 5) has an intense use of complex
calculations. We evaluate this algorithm on the baseline and
extended Bk3 for two values of SF , Table 4. An important
speedup is observed in all phases of the algorithm with
complex calculations, resulting in an overall gain of 45%
for SF = 7 and 48% for SF = 11. Focusing on the 16-bit

TABLE 3: Complexity of FSK Demodulation Algorithm
Average # of CPU cycles / complex sampleCpu Target
Preamble SFD Demod

RI5CY Basica (CA) 53.8 71.3 27
Bk3a (IA) 47.1 58 26.6

Bk3 + ext.a (IA) 35.3 45.6 20.3
Bk3a (CA) 52.6 68 27

Bk3 + ext.a (CA) 39.8 55 22
a LLVM, Flags: “-O3”

11

TABLE 4: Complexity of LoRa Preamble Detection Algorithm
Average # of CPU cycles / complex sample (IA model) Total # of cycles Total # of cyclesCpu Target Complex mul FFT Shift right 3 Abs()2 IIR & argmax per sample (IA) per sample (CA)

Bk3 22 89 12 11 149 164SF = 7 Bk3 + ext. 6 40 7 8 No 77 90
Bk3 22 130 12 11 change 190 204SF = 11 Bk3 + ext. 6 55.2 7 8 91 106

TABLE 5: 16-bit FFT Complexity (Results normalized by N)

RI5CYa RI5CY+Built-insb RI5CY+Built-insc Bk3 (IA)d Bk3 (CA)d Bk3+ext. (IA)d Bk3+ext. (CA)d
N = 128 109 100 88 89 92 40 46.7
N = 2048 163 149 133 130 135 55.2 64
aGCC-5.3.0, Flags: “-Ofast -funroll-all-loops”
bGCC-5.2.0, Flags: “-march=IMXpulpv2 -Ofast-funroll-all-loops -DUSE DSP RISCV -mnohwloop -mnopostmod -mnomac”
cGCC-5.2.0, Flags: “-march=IMXpulpv2 -Ofast -DUSE DSP RISCV”
dLLVM, Flags: “-O3”

FFT employed in this algorithm, Table 5 shows a speedup
of 49% and 53% for SF = 7 and SF = 11, respectively.
Here, the “MULC16”, “ADDC16”, “SUBC16”, “CRASC16”,
“CRSAC16”, and “SLLC16” instructions are used. We com-
pare these results with those obtained using the same FFT
algorithm but optimized to use the 16-bit SIMD options
offered by the RI5CY processor [35]. Since the compiler is
not the same, we also include results for the base RISC-V
design. Table 5 shows an improvement of approximately
9%. These results can be improved to approximately 19%
by enabling all of RI5CY’s hardware extensions (hardware
loop, post increment, “MAC” instruction) but still remain
more than a factor of 2 below our results. These results
confirm our previous results in [9] which showed that the
hardware extensions proposed in [28] are of limited interest
for our application.

The speedup for the CORDIC 10-iteration kernel ap-
plied on 16-bit complex data reaches 30% thanks to the
“CRASC16”, “CRSAC16” and “SRAC16” instructions (Ta-
ble 6). Next, the performance improvement of both the
“CLRSB” and “PACK” instructions are studied indepen-
dently in order to evaluate each instruction versus an equiv-
alent efficient software implementation. The values reported
in Table 7 correspond to the number of cycles required to
execute a single iteration of each of the FOR loops defined in
Figure 6. In particular, we observe the high efficiency (67%
improvement) of the “CLRSB” instruction. These two in-
structions are employed in the final LoRa demodulation test
bench along with the “MULC16-32” instructions, leading to
complexity improvements of 51% for SF = 7 and 52% for
SF = 11 (Table 8). In all of these results, we observe that IA
and CA model results are closely matched, validating the IA
model-based instruction set exploration approach.

TABLE 6: Complexity of 16-bit CORDIC algorithm
Bk3 (IA)a Bk3 + ext. (IA)a Bk3 (CA)a Bk3 + ext. (CA)a

92 61 (-34%) 100 70 (-30%)
aLLVM, Flags: “-O3”

TABLE 7
Performance improvements of AGC instructions

Bk3 Bk3 + ext. Bk3 Bk3 + ext.
(IA)a (IA)a (CA)a (CA)a

CLRSB 26 8 (-69%) 31 10 (-68%)
PACK 12 8 (-33%) 13 9 (-31%)
aLLVM, Flags: “-O3”

6.5 IoT protocol results

Thanks to the above test bench complexity evaluations, we
can now extrapolate the power consumption of the ex-
tended core running these algorithms for specific IoT proto-
cols. For each protocol, given the sampling rate of the input
complex baseband signal, we first find the minimum core
frequency required to process the samples in real time. Next,
using power simulation results (including both dynamic
and leakage power) obtained at different working frequen-
cies for our proposed design synthesized with a sign-off
frequency of 200 MHz, we extrapolate a linear power versus
frequency model of the extended core for the algorithms in
the test benches presented in Sections 5.1 and 5.2. These
models are used to estimate the actual power consumption
of each IoT protocol running at the corresponding minimum
core frequency. Note that the power results reported below
do not include the further energy savings that could be
obtained using dynamic voltage scaling (DVS) allowed by
the reduction of required CPU clock.

6.5.1 Bluetooth LE

The Bluetooth Low Energy (LE) physical layer employs
the GFSK modulation at a 1 Msymbols/s signaling rate.
Assuming an oversampling ratio (OSR) of 2 leading to
an input sampling rate of 2 Msamples/s and extracting
the worse-case complexity of 55 cycles/sample from Table
3 (Bk3+ext. CA model), we find that a minimum clock
frequency of 110 MHz is required. Using our power versus
frequency model, this results in a peak power consumption
of 380 µW during the start-of-frame (SFD) phase of the
frame detection algorithm. For comparison, in [24], a peak
power of 1.372 mW is obtained for a similar Bluetooth LE
work-load executed on a custom DSP processor in 28nm
CMOS and using aggressive voltage scaling (0.45 V). Our
work shows a more than three-fold improvement.

TABLE 8: Complexity of LoRa demodulation Algorithm

Total # of cycles Total # of cyclesCpu Target per sample (IA) per sample (CA)
Bk3 224 243SF = 7 Bk3 + ext. 101 120 (-51%)
Bk3 264 284SF = 11 Bk3 + ext. 115 136 (-52%)

12

6.5.2 LoRa preamble detection, BW = 125 kHz
A LoRa modulated signal can occupy a different wireless
channel bandwidth depending on the spectrum availability
of the country in which the system is deployed. In Europe
and China, the most frequently employed bandwidth is
125 kHz. Assuming a minimum sampling rate receiver, the
input sampling rate is thus 125 ksamples/s. From Table
4, we find that 90 and 106 cycles are required to process
samples at SF = 7 and SF = 11, respectively. This leads to
a minimum clock frequency of, respectively, 11.2 and 13.2
MHz. Using the extended core linear power model, this
results in 110 µW and 116 µW, respectively.

6.5.3 LoRa preamble detection, BW = 500 kHz
In countries where larger ISM bands are available, such as
in the USA, LoRa can be deployed on bandwidths up to
500 kHz, leading to greater bit-rates. Assuming a minimum
sampling rate receiver, the input sampling rate is thus
500 ksamples/s leading to a minimum clock frequency for
preamble detection of 45 and 53 MHz at SF = 7 and
SF = 11, respectively. Using the extended core linear power
model, this results in 203 µW and 225 µW, respectively.

Finally, we observe that, while the power consumption
estimations above remain conservative seeing the addi-
tional power savings that could be achieved in a solu-
tion implementing dynamic voltage scaling, the numbers
reported all remain compatible with our initial ultra-low
power transceiver design goal. This is true even for com-
putationally intense protocols such as maximum bandwidth
LoRa preamble detection. Most importantly, in addition to
allowing a considerable reduction of clock frequency and
therefore of instantaneous power consumption, thanks to
the important reduction of cycle count, the proposed ISA
extension also allows a significant reduction in energy con-
sumption.

CONCLUSION

In this work, we present an instruction-set extension to the
open-source RISC-V ISA which focuses on the acceleration
of complex arithmetic used in physical-layer protocols of
IoT communication schemes. To guarantee ultra-low power
performance, instructions are designed to come at a near-
zero power cost while reducing cycle count by more than
50% in complex arithmetic-intensive algorithms. The corre-
sponding reduction in clock frequency results in substantial
energy savings confirmed by post-synthesis power simula-
tions of the extended core. By proving the feasibility of ultra-
low power performance even for computationally intense
protocols such as maximum bandwidth LoRa preamble
detection and Bluetooth Low Energy, this work paves the
way to making ultra-low power software-defined radio a
reality.

ACKNOWLEDGMENTS

Carolynn and Hela thank Vincent Morice (now with STMi-
croelectronics) for his contribution to embedded software
design for LoRa, François Dehmas of CEA, LETI for his ex-
pertise in DBB protocols, all of the members of the LFIM and
LSTA laboratories of CEA, LIST for their infinite patience in

answering our questions concerning microarchitectures, and
Zdeněk Přikryl and Jerry Ardizzone of Codasip for making
this research possible.

REFERENCES

[1] R. G. Machado and A. M. Wyglinski, “Software-Defined Radio:
Bridging the Analog–Digital Divide,” Proceedings of the IEEE, vol.
103, no. 3, pp. 409–423, 2015.

[2] A. Kamaleldin, S. Hosny, K. Mohamed, M. Gamal, A. Hussien,
E. Elnader, A. Shalash, A. M. Obeid, Y. Ismail, and H. Mostafa,
“A reconfigurable hardware platform implementation for software
defined radio using dynamic partial reconfiguration on Xilinx
Zynq FPGA,” in 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS), 2017, pp. 1540–1543.

[3] D. C. Dinis, R. Ma, S. Shinjo, K. Yamanaka, K. H. Teo, P. V. Orlik,
A. S. R. Oliveira, and J. Vieira, “A Real-Time Architecture for Agile
and FPGA-Based Concurrent Triple-Band All-Digital RF Transmis-
sion,” IEEE Transactions on Microwave Theory and Techniques, vol. 66,
no. 11, pp. 4955–4966, 2018.

[4] M. R. Maheshwarappa, M. D. J. Bowyer, and C. P. Bridges,
“Improvements in CPU FPGA Performance for Small Satellite
SDR Applications,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 53, no. 1, pp. 310–322, 2017.

[5] R. Nivin, J. S. Rani, and P. Vidhya, “Design and hardware imple-
mentation of reconfigurable nano satellite communication system
using FPGA based SDR for FM/FSK demodulation and BPSK
modulation,” in 2016 International Conference on Communication
Systems and Networks (ComNet), 2016, pp. 1–6.

[6] L. Ouvry, D. Lachartre, C. Bernier, F. Lepin, F. Dehmas, and V. Des-
landes, “An Ultra-Low-Power 4.7mA-Rx 22.4mA-Tx Transceiver
Circuit in 65-nm CMOS for M2M Satellite Communications,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5,
pp. 592–596, 2018.

[7] C. Gavrilă, C. Kertesz, M. Alexandru, and V. Popescu, “Reconfig-
urable IoT Gateway Based on a SDR Platform,” in 2018 Interna-
tional Conference on Communications (COMM), 2018, pp. 345–348.

[8] E. A. Waterman and K. Asanovic, Eds., The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Document Version 2.2. RISC-V
Foundation, May 2017.

[9] H. Belhadj Amor and C. Bernier, “Software-Hardware Co-Design
of Multi-Standard Digital Baseband Processor for IoT,” in 2019
Design, Automation Test in Europe Conference Exhibition (DATE),
March 2019, pp. 646–649.

[10] D. S. Truesdell, J. Breiholz, S. Kamineni, N. Liu, A. Magyar,
and B. H. Calhoun, “A 6–140-nW 11 Hz–8.2-kHz DVFS RISC-
V Microprocessor Using Scalable Dynamic Leakage-Suppression
Logic,” IEEE Solid-State Circuits Letters, vol. 2, no. 8, pp. 57–60,
2019.

[11] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini,
E. Flamand, and L. Benini, “Slow and steady wins the race?
A comparison of ultra-low-power RISC-V cores for Internet-of-
Things applications,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PATMOS),
2017, pp. 1–8.

[12] R. Uytterhoeven and W. Dehaene, “A sub 10 pJ/Cycle Over a 2
to 200 MHz Performance Range RISC- V Microprocessor in 28 nm
FDSOI,” in ESSCIRC 2018 - IEEE 44th European Solid State Circuits
Conference (ESSCIRC), 2018, pp. 236–239.

[13] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “GAP-8: A RISC-V SoC for AI at the Edge of the IoT,”
in 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2018, pp. 1–4.

[14] Texas Instruments. CC1310 Datasheet. [Aug. 15, 2020]. [Online].
Available: https://www.ti.com/product/CC1310

[15] A. Pullini, F. Conti, D. Rossi, I. Loi, M. Gautschi, and L. Benini,
“A Heterogeneous Multicore System on Chip for Energy Efficient
Brain Inspired Computing,” IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, vol. 65, no. 8, pp. 1094–1098, 2018.

[16] Y. Pu, C. Shi, G. Samson, D. Park, K. Easton, R. Beraha,
A. Newham, M. Lin, V. Rangan, K. Chatha, D. Butterfield, and
R. Attar, “A 9-mm2 Ultra-Low-Power Highly Integrated 28-nm
CMOS SoC for Internet of Things,” IEEE Journal of Solid-State
Circuits, vol. 53, no. 3, pp. 936–948, 2018.

13

[17] W. Q. Lu, S. Zhao, X. F. Zhou, J. Y. Ren, and G. E. Sobelman,
“Reconfigurable baseband processing architecture for communi-
cation,” IET Computers Digital Techniques, vol. 5, no. 1, pp. 63–72,
2011.

[18] T. Suzuki, H. Yamada, T. Yamagishi, D. Takeda, K. Horisaki,
T. Vander Aa, T. Fujisawa, L. Perre, and Y. Unekawa, “High-
Throughput, Low-Power Software-Defined Radio Using Recon-
figurable Processors,” IEEE Micro, vol. 31, no. 6, pp. 19–28, 2011.

[19] T. V. Aa, M. Palkovic, M. Hartmann, P. Raghavan, A. Dejonghe,
and L. Van der Perre, “A multi-threaded coarse-grained array
processor for wireless baseband,” in 2011 IEEE 9th Symposium on
Application Specific Processors (SASP), 2011, pp. 102–107.

[20] P. Wu, C. Zhang, C. Wei, H. Jiang, and Z. Wang, “A base-
band transceiver for multi-mode and multi-band SoC,” in 2012
IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS), 2012, pp. 770–773.

[21] M. Schrey, M. Scholl, T. Saalfeld, J. H. Mueller, V. Bonehi, C. Bey-
erstedt, F. Speicher, and S. Heinen, “An O-QPSK modem us-
ing an FSK RF front end for IEEE 802.15.4 operation providing
Maximum-Likelihood data,” in 2018 International Conference on
Computing, Networking and Communications (ICNC), 2018, pp. 210–
214.

[22] A. Espinoza-Rhoton, L. F. Gonzalez-Perez, J. L. Ponce, B. Hector,
L. C.-Yllescas, R. Parra-Michel, and H. Aboushady, “An FPGA-
based all-digital 802.11b 802.15.4 receiver for the Software Defined
Radio paradigm,” in 2014 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig14), 2014, pp. 1–6.

[23] M. A. Zubair, A. K. Nain, J. Bandaru, P. Rajalakshmi, and U. B.
Desai, “Reconfigurable dual mode IEEE 802.15.4 digital baseband
receiver for diverse IoT applications,” in 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT), 2016, pp. 389–394.

[24] Y. Chen, S. Lu, H. Kim, D. Blaauw, R. G. Dreslinski, and T. Mudge,
“A low power software-defined-radio baseband processor for the
Internet of Things,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), March 2016, pp. 40–51.

[25] S. Wu, S. Kang, C. Chakrabarti, and H. Lee, “Low power baseband
processor for IoT terminals with long range wireless communi-
cations,” in 2016 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Dec 2016, pp. 728–732.

[26] C. A. R. A. Melo and E. Barros, “Oolong: A Baseband processor
extension to the RISC-V ISA,” in 2016 IEEE 27th International Con-
ference on Application-specific Systems, Architectures and Processors
(ASAP), July 2016, pp. 241–242.

[27] AndesStar DSP ISA Extension Specification. [May 28, 2019].
[Online]. Available: http://www.andestech.com

[28] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-Threshold
RISC-V Core With DSP Extensions for Scalable IoT Endpoint
Devices,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2700–2713, Oct 2017.

[29] J. Tu and L. Van, “Power-efficient pipelined reconfigurable fixed-
width Baugh-Wooley multipliers,” IEEE Transactions on Computers,
vol. 58, no. 10, pp. 1346–1355, Oct 2009.

[30] Bluetooth core specification version 5.0, Blue-
tooth SIG, 2016. [Nov. 8, 2019]. [Online]. Avail-
able: https://www.bluetooth.com/specifications/bluetooth-core-
specification

[31] D. Lachartre, F. Dehmas, C. Bernier, C. Fourtet, L. Ouvry, F. Lepin,
E. Mercier, S. Hamard, L. Zirphile, S. Thuries, and F. Chaix, “7.5
A TCXO-less 100Hz-minimum-bandwidth transceiver for ultra-
narrow-band sub-GHz IoT cellular networks,” in 2017 IEEE Inter-
national Solid-State Circuits Conference (ISSCC), 2017, pp. 134–135.

[32] R. Ghanaatian, O. Afisiadis, M. Cotting, and A. Burg, “Lora Digital
Receiver Analysis and Implementation,” in 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing, May 2019, pp.
1498–1502.

[33] C. Bernier, F. Dehmas, and N. Deparis, “Low Complexity LoRa
Frame Synchronization for Ultra-Low Power Software-Defined
Radios,” IEEE Transactions on Communications, vol. 68, no. 5, pp.
3140–3152, 2020.

[34] C. S. Burrus. Fast Fourier Transforms. 2012. [On-
line]. Available: http://cnx.org/contents/82e6ba6f-b828-42ef-
9db1-8de4b448b869@22.1

[35] CMSIS DSP for PULPino. [Online]. Available:
https://github.com/misaleh/CMSIS-DSP-PULPino

[36] MathWorks. Calculate Fixed-Point Arctangent. [Online]. Avail-

able: https://fr.mathworks.com/help/fixedpoint/ug/calculate-
fixed-point-arctangent.html

[37] Wikipedia: Find first set. [Nov. 8, 2019]. [Online]. Available:
https://en.wikipedia.org/wiki/Find first set

[38] Extending RISC-V ISA with a custom instruction set extension.
[May 28, 2019]. [Online]. Available: https://codasip.com

[39] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini,
“XpulpNN: Accelerating Quantized Neural Networks on RISC-V
Processors Through ISA Extensions,” in 2020 Design, Automation
Test in Europe Conference Exhibition (DATE), 2020, pp. 186–191.

Hela Belhadj Amor received her engineering
diploma in Industrial Electronics and her M.S.
degree in Intelligent and Communicant Systems
from the National Engineering School of Sousse
(ENISo),Tunisia, in 2012 and 2013, respectively.
In 2017, she got her Ph.D in computer science
from the Institute of Engineering Univ. Grenoble
Alpes, France. After a postdoctoral fellowship at
CEA, she is now with Dolphin Design, Greno-
ble, France. Her research interest includes Iot,
low power architectures, RISC-V/ARM microar-

chitectures, wireless communications, hardware/software co-design,
cache hierarchy for manycore architecture, coherency protocols and the
network-on-chip performance.

Carolynn Bernier is a wireless systems de-
signer and architect specialized in IoT commu-
nications. She has been involved in radiofre-
quency and analog design activities at CEA
since 2004, always with a focus on ultra-low
power design methodologies. Her recent inter-
ests are in low complexity algorithms for ma-
chine learning applied to deeply embedded per-
ception systems. She received the Bachelor
Degree in Applied Science and Engineering in
Computer Engineering from the University of

Toronto in 1998 and a PhD degree in Microelectronics from the National
Polytechnical Institute of Grenoble in 2003.

Zdeněk Přikryl received his PhD degree at Brno
University of Technology where he played a sig-
nificant role in the research related to processor
development automation. It enabled the creation
of the processor development tools, Codasip
Studio, at Codasip. Dr. Přikryl has continued
working as the chief architect of Codasip Studio
for more than ten years. He has also been the
architect of diverse processor cores, including
but not limited to 16/32-bit architectures for IoT,
32/64bit DSP-oriented architectures, or Linux

capable architectures. All of these architectures were developed using
Codasip Studio, and many of them were based on the RISC-V ISA.

