CHERI is not just a
hardware extension

Carl Shaw

- What is CHERI?

The term “CHERI” is (often confusingly) used to describe:

« The hardware ISA modifications
- The security model (based on capability-based addressing)
« The software programming language support

- CHERI Task Group

The CHERI Task Group (TG) is working on the RISC-V hardware ISA changes, with
the draft specification document now available from the CHERI TG’s repository
[1]. These CHERI hardware RISC-V extensions efficiently implement the security
model to provide the critical security protection measures of:

 Spatial and temporal memory safety [1] https://github.com/riscv/riscv-cheri
« Control flow integrity (CFI)

« Fine-grained compartmentalization

- Why is CHERI needed?

Memory safety is a critical security problem that has gained substantial
visibility and there is strong demand for a practical solution that can be
applied to legacy code.

~$10T

OX ~ /0%

Increase in firmware
attacks reported by NIST
between 2017 and 2021

Worldwide cost estimate of

cyberattacks per year
(and growing fast)

Of CVEs reported by
Microsoft, Chromium, and

Ubuntu related to memory
safety

CHERI also boosts the security and efficiency of newer software written in
memory-safe languages by replacing software checks by robust hardware
checks, securing software language virtual machines, and by protecting
low-level memory accesses that cannot be protected by higher-level
architectural constructs such as borrow-checking.

CFl prevents advanced attacks such as return-oriented programming.

Compartmentalization enables next-generation safe and secure software
architectures based on the fundamental security principle of least privilege. It
also protects "hybrid” software today that mixes memory-safe and
memory-unsafe languages (e.g. the common case of calling high-performance
C libraries from Python).

— CHERI Software

The CHERI ISA extensions are designed to be as minimal as possible and form a
toolkit that software can use to build higher-level security constructs like
temporal memory protection and strong compartmentalization. The CHERI
approach is a strong example of hardware-software co-design.

The CHERI compilers (currently C/C++, with Rust planned) do most of the heavy
lifting, but some modification to software may be necessary. As a rule of
thumb, the lower level the code, the more modification is required. However, we
have found that many of the modifications at the application level are code
improvements and fixes.

The software impact is highest in:

« Bootloaders and firmware

« Operating Systems (0S)

« Lanquaqge libraries, runtimes and virtual machines
« Dynamic loaders

« Memory allocators

Low Impact

And lowest in application code (typically <0.5% LoC change)

High Impact

® Codasip

- Governments highlighting memory security

i 4
Australian Covcrmm
Auntraian Sigmab Dirveivesic

Eeb 1 pld qu-ms mﬂ|waﬁor?al g}"ﬂer nnnnnnnnnn
. O | Security Centre [Security Centre
@ pant of GoHG

BACK TO THE
BUILDING

BLOCKS:

The Case for Memory Safe
Roadmaps

A PATH TOWARD SECURE AND

MEASURABLE SOFTWARE Why Both C-Suite Executives and Technical Experts

Need to Take Memory Safe Coding Seriously

FEBRUARY 2024

This document is marwed TLP:CLEAR, Disciosure & nol fimied. Sources may use TLP.CLEAR when nformialion carrises minimal or na
foreseeabls risk of misuse, in accomdance with spplicable rules and procedures for pulbfic relesse, Subject fo standavd copyright rules,

- Supporting CHERI

For CHERI to be successfully adopted, it must have broad support in common software. We are
starting by targeting lower-level software packages such as 0S, tools and libraries, which are
critical to ease the development of higher-level applications:

Software package Current status

LLVM C/C++ compiler / toolchains

LLVM17 supported and now working

on LLVM8. Bare-metal (Newlib) and
BSD, Linux toolchains.

RISC-V Sail model Preparing to upstream

QEMU QEMU v6.0 supported. Currently
working to increase version to
support newer RISC-V extensions

CHERI Linux In early development

CheriBSD Currently adding support for latest
draft specification

CheriFreeRTOS Migrating support to latest draft

specification

CHERI Zephyr RTOS In early development

CHERI selL4 In development
CherloT OS In planning
CHERI Rust compiler In planning

Many software packages enhanced with CHERI as part of the Arm Morello CHERI project will also
be available and RISC-V support added where required, adding a considerable body of packages.

- Impact of CHERI

CHERI has minimal hardware overhead, but what about software? We have found the impact of CHERI
depends very much on the software being run and how CHERI is being used. For the following
figures we assume memory and CFl protection only and no compartmentalization. First off, we can
remove existing weak software-based security mechanisms that add code, memory and/or
performance overhead : stack protector; ASLR; shadow stacks, etc. This can save up to 5%
performance overhead. Adding CHERI support typically adds < 5% performance difference, hence
any impact on performance is usually unnoticed but the security level is much higher.

Code size is increased with CHERI due to the extra instructions e.qg. to set memory bounds and
permissions. For example, comparison of a Linux kernel built with CHERI and one built without CHERI
(but with KASLR and stack protection enabled) yielded an increase of 6% for the CHERI kernel.

There is also an impact in memory footprint as pointers and reqgisters pushed to the stack are now
double the size. However, the impact is very software dependent.

Find out more

- B
Apps
B
b d
Dynamic Loader _ o =
n 8 n
|
0S B
B

Hypervisor

Bootloaders
Firmware

5] T

Closer to hardware

