
Let’s make a standard for
CHERI-RISC-V
Tariq Kurd

→ From CHERI v8 to CHERI-RISC-V
• CHERI v8 imported into CHERI v9 repo in April 2022
• CHERI v9 changes
▪ CHERI-MIPS removed
▪ CHERI-RISC-V now the base architecture
▪ CHERI-x86 sketch added

• And of course ARMv8 – Morello – also exists

• CHERI-RISC-V changes in CHERI v9
▪ Merged register-file only, split option removed
◦ This was legacy from MIPs

▪ Removal of DDC, PCC offsetting
▪ Add CGetHigh, CSetHigh for capability creation and querying
▪ Add per-privilege enables into menvfg, senvcfg CSRs
▪ Moving to tag clearing to reduce exception sources

Find out more

→ Getting to the RISC-V Github repo
• Started working with Cambridge University on the CHERI-RISC-V specification

after a discussion at the RISC-V Summit in Barcelona in June 2023
• We were already working in the background on a different version of the CHERI

specification document
▪ Extracting well defined features from CHERI v9
◦ Postponing experimental and less well-defined features
◦ Defining a stable base architecture

▪ Written as an implementation spec
▪ Covers all the necessary questions asked by the implementation and

verification teams to allow the product to be built
• We tested this spec on our A730-CHERI core development

→ From CHERI-RISC-V v9 to the
 Codasip Demo

Then the real specification work started refining the architecture

At Codasip we worked independently to fill in gaps in the specification to allow a
product to be built
1.There was no CHERI-RISC-V debug specification (Sdtrig/Sdext)
2. Not all mnemonics were clearly specified

A. E.g. did c.j map to c.cj in capability mode? The semantics don’t change….
B. Missing encodings for 16-bit instructions….

3. Merging the exception priorities with the standard RISC-V ones
4. And various other changes

January 2024
After review with Cambridge Uni, the Codasip
CHERI spec document became v0.7.0
on Github

→ RV32: Format
The RV32 format poses challenges due to limited encoding
space
• CHERI v9 has
▪ 12-bit permissions
▪ 8-bit mantissa (encoded as 8 for Base, 6 for Top) – 14-bits
▪ 1-bit flag (Mode)
▪ 4-bit Otype
▪ 1-bit Internal Exponent flag

The final encoding has:
• 2 software defined permissions
• 5 architectural permissions (6 including the Mode bit)
▪ With space for more to be added

• 4 reserved bits (for local/global?)
• 1 sealed bit
• T8 gives an extra mantissa bit when the exp is zero, or a 5-bit exp field

→ Invalid address handling: the problem

Invalid
addresses may
change when

written to
registers such

as MEPC for
Sv39 or Sv48

Is the new address
in bounds or not?

Do we need to
check? It’s not
cheap to do so

→ Illegal address handling: the solution
A new CHERI exception type
• For running software in a CHERI compartment only
▪ Take an invalid address CHERI exception, so we don’t care if the address is

representable or in bounds or not
• Existing RISC-V code on a CHERI core still takes an access fault

Reduces the size of the bounds comparators
• Previously CHERI required full 64-bit address comparators
▪ Now we need 39-bit for Sv39, 48-bit for Sv48
▪ This gives a nice power and area saving, and is simpler

• This also compatible with pointer masking as we don’t need to compare the masked
range of the address

→ History of CHERI → The future

