
© 2020 Arm Limited (or its affiliates)

Laurent Arditi, Vincent Abikhattar – Arm Ltd., France

Joe Hupcey, Jeremy Levitt – Mentor, A Siemens Business, USA

September 2020

Easy deadlock
verification and debug
with advanced formal

DAC’20 extended version

2 © 2020 Arm Limited (or its affiliates)

Author bios

Laurent Arditi. Arm, CPU, Sophia-Antipolis, France
20+ years experience in the semiconductor and EDA industry. Expert
in formal verification, modeling, and high-level synthesis. Leading a
CPU formal verification team. Ph.D. from Nice, France

Vincent Abikhattar. Arm, CPU, Sophia-Antipolis, France

Senior engineer in formal verification. Working on the next
generation of Arm application CPUs, especially in the formal
verification targeting the memory sub-system. M.sc from
Grenoble, France

Dr. Jeremy Levitt. Mentor, A Siemens Business; Fremont, CA office

Principal Engineer, Formal Verification Group. Manages R&D for the Questa
Formal product line, with 25+ years working on formal verification in EDA.
Ph.D. in Electrical Engineering from Stanford University; B.A.Sc. in Eng.
Science from the University of Toronto

Joe Hupcey III. Mentor, A Siemens Business; Fremont, CA office

Verification Product Technologist. Manages the Questa Formal product
line. 15+ years in Product Management; Pre-MBA ASIC & FPGA D&V.
Cornell University BSEE, MENG, MBA

This presentation is an illustration of a
close cooperation between EDA and a
semiconductor company.

Arm uses the Mentor QuestaFormal
tool to verify CPUs. Deadlock checks
being one of the most difficult task, we
show here how an innovative tool
feature helps to tackle it.

3 © 2020 Arm Limited (or its affiliates)

Design deadlocks are critical and difficult to find

• The most difficult bugs to find in hardware designs are deadlocks, livelocks
and QoS issues

• Traditional techniques to detect them in simulation/emulation are:
• Add local watchdogs (e.g. FSM does not stay in state S for more than N cycles)

– It is difficult to find the real N
– They may find very localized issues, but not larger ones like livelocks

• Add a global watchdog
– Difficult to define the global “progress”

• It is not exhaustive anyway!

• Traditional methods with formal verification are:
• Proof of liveness assertions with the SystemVerilog semantics
• Semi-formal bug-hunting techniques. Not mature yet, not exhaustive

4 © 2020 Arm Limited (or its affiliates)

What’s wrong with the formal verification of liveness asserts?
• Safety assertions are on the form “something bad must not happen”:

assert property (something |-> !bad_event)

• Liveness assertions are “something good must always eventually happen”:
assert property (something |-> s_eventually good_event)

• Often the liveness assertions fail in a formal proof: they check for maybe-escapable
deadlocks

• Fairness constraints must be added:

assume property(s_eventually (trigger_for_good_event))

• But this is a difficult task, and may be incorrect done, so masking bugs
• May not be able to verify the fairness constraints as liveness asserts on other blocks
• High risk of incorrect circular reasoning when using the assume/guarantee technique

5 © 2020 Arm Limited (or its affiliates)

New formal-based deadlock detection: perform 2 checks

Maybe-escapable deadlock (LTL semantics, SVA):

The koala has an escape route from the tree, but does not
want to take it.

Adding the fairness constraint that the tree will eventually
not provide food anymore may encourage him to move?

Unescapable deadlock (CTL semantics):

The raccoon has no escape from the cage.

Whatever happens in his environment, he is
trapped!

6 © 2020 Arm Limited (or its affiliates)

New formal-based deadlock detection: combine results

• Each assertion has 2 results: maybe-escapable, and unescapable deadlock

Proven as not maybe-escapable Maybe-escapable

Proven as not
unescapable

No deadlock Found deadlock is escapable
Must examine the escape event

Unescapable - A real deadlock exists
Probably a design bug

7 © 2020 Arm Limited (or its affiliates)

New formal-based deadlock detection: undetermined cases

• However, formal can’t always get a precise result

Proven as not maybe-escapable Maybe-escapable

Undetermined No deadlock, except if incorrect
fairness constraints

A maybe-escapable deadlock
exists. Must debug

8 © 2020 Arm Limited (or its affiliates)

Escapable deadlock: waveforms

New tool feature: an escapable deadlock result comes with a waveform
showing the event which allows to exit from an otherwise infinite loop

9 © 2020 Arm Limited (or its affiliates)

Escapable deadlock: what do we do?

2. Escape condition is valid (not a real deadlock). Add fairness
constraints and rerun to ensure both checks pass

assume property (req |-> s_eventually ack)

This debug work is much simpler than the one with the
traditional method looking only at maybe-escapable deadlocks.

1. Escape condition is not interesting. Add safety constraints to avoid
them and rerun
E.g. warm reset, or ECC fatal error detection which puts the design in IDLE state
assume property (!warm_reset && !ecc_fatal_error)

Examine the waveform. Two cases:

10 © 2020 Arm Limited (or its affiliates)

Unescapable deadlock: is there anything to do?

This is a real design bug

Open a new ticket assigned to design team

No need to ensure the failure is not due to
missing fairness constraints

Having the extra information that it is not an escapable
deadlock allows to reduce debug time a lot. No risk of adding
unnecessary and incorrect fairness constraints

11 © 2020 Arm Limited (or its affiliates)

Method applied to a large CPU in development (1)

• Instruction Fetch unit FSMs
• Local FSMs are resilient to incorrect or unexpected environment behaviors
• Maybe-escapable deadlocks are frequent, and their escape conditions are safe
• A few results showed unescapable deadlocks

– Some real design bugs, not found by any other method
– Interesting issues with formal abstractions and their related constraints, not visible with a

simple reachability analysis:
assert property (s_eventually(event))

is a much stronger check than
cover property (event)

• Proof time is a few minutes, with no overhead for also running the unescapable
deadlock checks

12 © 2020 Arm Limited (or its affiliates)

Method applied to a large CPU in development (2)
• L1 data cache arbiter

• Mix of static and dynamic arbitration policies, with 6 requesters and optimized for
performances

• Liveness properties on the form
assert property (req_A |-> s_eventually(grant_A))

• Maybe-escapable checks failed and would need lots of fairness constraints to model
requester behavior

• Unescapable checks helped to clarify specs, to push for more validation on
requesters, and finally provided proofs

• Credit-based protocol
• Can prove that no credit is lost
• A few critical bugs found

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)

